Fast Fermi Acceleration and Entropy Growth
نویسندگان
چکیده
منابع مشابه
Fast Fermi Acceleration and Entropy Growth
Fermi acceleration is the process of energy transfer from massive objects in slow motion to light objects that move fast. The model for such process is a time-dependent Hamiltonian system. As the parameters of the system change with time, the energy is no longer conserved, which makes the acceleration possible. One of the main problems is how to generate a sustained and robust energy growth. We...
متن کاملFermi Acceleration
Fermi acceleration is a mechanism, first suggested by Enrico Fermi in 1949, to explain heating of particles in cosmic rays. Fermi studied charged particles being reflected by the moving interstellar magnetic field and either gaining or losing energy, depending on whether the ”magnetic mirror” is approaching or receding. In a typical environment, Fermi argued, the probability of a head-on collis...
متن کاملFermi acceleration in astrophysical jets
We consider the acceleration of energetic particles by Fermi processes (i.e., diffusive shock acceleration, second order Fermi acceleration, and gradual shear acceleration) in relativistic astrophysical jets, with particular attention given to recent progress in the field of viscous shear acceleration. We analyze the associated acceleration timescales and the resulting particle distributions, a...
متن کاملFermi Acceleration at relativistic Shocks
After a successful development of theoretical and numerical works on Fermi acceleration at relativistic shocks, some difficulties recently raised with the scattering issue, a crucial aspect of the process. Most pioneering works were developed assuming the scattering off magnetic fluctuations as given. Even in that case, when a mean field is considered, its orientation is mostly perpendicular to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Modelling of Natural Phenomena
سال: 2015
ISSN: 0973-5348,1760-6101
DOI: 10.1051/mmnp/201510304